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HEAT-TRANSFER MECHANISM AT A GAS-FIBER BOUNDARY 

I. G. Ch--mk and V. G. Pogontsev UDC 5 3 6 . 2 4 4 : 6 2 1 . 1 8 6 . 4  

Heat conduction in a fibrous dispersed material with a gas filler is studied. 

Molecular thermal conductivity of a gas in a free volume, introduced by the molecular- 
kinetic theory, results from intermolecular interactions in the gas. 

In dispersed two-component materials there are not only intermolecular interactions but 
also interactions of gas molecules with the solid component. The heat-transfer mechanism 
by gas molecules in a dispersed material is studied together with the interaction at the 
boundary between the gas and the solid component, and the corresponding molecular thermal 
conductivity of the gas A m is determined, e.g., from the relation [i] 

XM = Xg[1 -i- B/(/-/6)]-', (1) 

where B is a constant for a given gas and H is the pressure of the gas. 

The simultaneous study of intermolecular interactions and interactions at the gas--solid 
boundary in a dispersed material complicates the study of the separate mechanisms. At the 
same time, knowledge of the physics of the heat-transfer process in a boundary layer whose 
thickness is comparable with the mean free path of gas molecules enables us to study the 
heat-transfer mechanism in dispersed materials more completely, to discover the physical 
nature of the transport coefficients, and to establish their qualitative behavior and numeric- 
al values. 

Since heat transfer between a gas and a solid takes place in a layer of thickness ~*, 
it is expedient to study heat transfer by the thermal conductivity of a gas filler in a dis- 
persed material by taking separate account of intermolecular interactions and interactions 
of gas molecules with the solid. Therefore, we use a model with interpenetrating components 
[i] to represent fibrous materials with a random structure, and introduce a supplementary 
thermal resistance of a layer of thickness ~* at the gas-flber boundary. Figure la shows 
one-eighth of the elementary cell under study, and Fig. ib the circuit diagram of the thermal 
resistances. 

Figure ib illustrates the physical meaning of the proposed method for taking separate 
account of intermolecular interactions and interactions at a gas--fiber boundary. Suppose 
there are N gas molecules in an elementary cell. Since air at atmospheric pressure is a 
rarefied gas in which binary molecular interactions predominate, at any arbitrary instant a 

--Odessa Technologicai Institute of-the Refrigeration Industry. Translated from 
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Fig. i. Scheme for calculating the effective thermal conductiv- 
ity of a system with interpenetrating components: a) one-eighth 
of a cell; b) circuit diagram of thermal resistances. 

portion Na of the molecules will be interacting with one another, and a portion N~ with the 
fiber. The result of the first type of interactions is the transfer of thermal energy by 
the thermal conductivity of the gas, and the result of the second type of interaction is 
heat transfer at the gas-fiber boundary. Since the two types of interaction occur simul- 
taneously and independently of one another, the diagram presented here shows the resistances 
R5 and R6 connected in parallel with the resistances RT, Rs, and R~. All series connections 
of resistances represent taking account of interactions of molecules of the boundary layer 
of the gas with a fiber. 

We choose the adlabatic planes i'--I' and 2'--2' parallel to the common direction of heat 
flow and the lateral faces of the cell at the separate sections i, 2, 3, 4. We express the 
thermal resistances of the parts of an elementary cell R i by the equations for a flat wall 

L A 1 I 
- - - -  R . . . .  _ �9 R ~ =  ~ �9 R ~ -  �9 

~.,=~2 ' - },,I*A ' " ml*A c~7 ~-" 

[L -- ~* --' A)I [L -- (7 ~ -- A)I 
R5 = ~,~ [ L - - ( I *  '-- A)] (I* A ~  ; Re = ~ , r l L - - ( 7 *  " A)] I7"--'. A) 

A 1 
R7 = ; Rs = ; 

[L - -  (7-* ' ~)I (m - .~) 

L 
; Rio = 

Z~ [L -- (/~ ,'-- A)I 2 

L 
R I I  = 

Xr [L - -  ~* --' A)I 2 

R t -  

x, [L -- (7* = a)l A 

1 
R g =  

LL--  (m '~)17* 

We write the total or effective thermal resistance R of an elementary cell in the form 

] ] 2 2 2 I ! 
- - =  + ~ -  . . . . . . .  9 
R RI - -  2R2 § 2R3 -9 R~ R~ R~ R.~ " R~ ' R9 R, .  R i l  

(2) 

(3) 

The total thermal resistance of this volume filled with a homogeneous material with an ef- 

fective thermal conductivity Aef f is 
! 

R =- . . . .  �9 (4) 

Equating (3) and (4), taking account of (2), and making some algebraic transformations, 
we obtain an expression for the effective thermal conductivity of a structure with interpene- 
trating components 
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Fig. 2. Heat-transfer coefficient 
e, 104 W/m2.deg K, at a gas--fiber 
boundary as a function of porosity. 

Fig. 3. Thermal conductivity ~_*, 
W/m,deg K, of a gas inside a dis- 
persed fibrous material as a func- 
tion of porosity. 

where 

~,eff-= ~,, {v [I -~-(C +S)Zl + 
Czs  

( S - 2 C  2) I3(C 2 : 1 S C ~  
A- 

2 11 - -  (C -- S)l I 
( s )i' 

1 - -  ~ 1 "i C - - S  

( 5 )  

" . -l* 47* C 
v ---- ~ _ ~ :  },r . )" �9 S - -  -- , (6) 

and the parameter C is related to the porosity m by the expression [I] 

m = 2C 3 -  3C z %- I. ( 7 )  

We write the parameter S in another form by using the expression for the average dist- 
ance between fibers 6 in an elementary cell [i]: 

-6= D.C. (8) 

Then 

4 
S -  - ~  Kn*, Kn*= ~--. (9) 

In accord with the method assumed above of taking separate account of intermolecular 
interactions and interactions at a gas-solid boundary, we obtain relations for the heat- 
transfer coefficient at a gas--fiber boundary and the molecular thermal conductivity of a gas 
inside a fibrous dispersed material. 

As shown in [3], the number of collisions v, of a molecule with the surfaces of fibers 
is 

~', = -vFsp /4m, (i0) 

where Fsp ffi Fso/V. The volume V, occupied by the gas at a distance ~* from a fiber within 
the limits of an elementary cell (Fig. I) is 

V, = 2A 3 q- 3LI* (l* = 2A)- 2 (l* 4-  A) 3. (11) 

The total number of molecules in the volume V, under normal conditions is 

g I : noV i. (12) 

The total number of collisions of gas molecules in a layer of thickness ~* with the 
surfaces of fibers is 

v o = \ ' , N t .  (13) 
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Fig. 4. Comparison of calculated and experimental 
values of the effective thermal conductivity of fib- 
rous materials: i) fiberglass AA, fiber diameter 
1.015 ~m, average temperature 192~ [5]; 2) AAAA, 
0.56 ~m, 297~ [4]; 3) AA, 1.14 ~m, 297~ [4]; 4) 
fiberglass B, 3.43 ~m, 297~ [4]; 5) fiberglass PF-600, 
12.2 ~m, 297~ [4]; 6) fiberglass A, 2.58 ~m, 338~ [6]; 
7) fiberglass B, 1.51 ~m, 422~ [6]; 8) rock wool, i0.0 
wm, 190~ [2]; 9) fiberglass, 15.2 ~m, 297, 311, 338~ 
[7]; i0) fiberglass, 0.685 ~m, 297, 311, 338~ [7]. 
Open points calculated by Eq. (5); solid points cal- 
culated by (28). ~ is in W/m.deg K. 

As a result of vo collisions of gas molecules in a layer of thickness ~* an amount of energy 

A E - -  3 a k ( T ~ _ T s )  vo, (14i 
2 

is transferred to fiber surfaces, where T i -- T s is the temperature difference across the 
layer of gas at a distance ~* from a fiber. 

Substituting Eqs. (10)-(13) into (14) and making some transformations, we obtain 

AE= 8-3 akno ~ [,2C 3 .-3(S 2-:-2SC)m --2(C--S) s Jl F~ (T,--T~). (15) 

Taking account of the Eucken correction for a polyatomic gas, we finally obtain 

wh ere 

AE ~ r (Ti T~) 

ix----: 3-2-3 aknov(~,.,_~_~) [1, [2C3--3(S"--2SC)m --2(C -S) s Ji' 

(16) 

(17) 

Figure 2 shows the dependence of the heat-transfer coefficient at a gas--fiber boundary 
on porosity for various fiber diameters, atmospheric air pressure, average temperature 300~ 
and accommodation coefficient a = i. 

We obtain an expression for the molecular thermal conductivity of a gas inside a dis- 
persed material resulting from intermolecular interactions in the following way. 
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Accord{ng to the molecular-kinetic theory, the molecular thermal conductivity of a gas 
in a free volume is given by the expression 

Cppg~ 7---k,,i, (18) 
Zg = 3M 

where ko is a quantity depending on the pressure, temperature, and kind of gas. 

A similar expression can be written for a gas inside a dispersed material: 

)'g = ko>" (19) 

Kostylev [3] showed that ~* is always less than ~: 

[ ' 4 m  
We obtain an expression for Fsp from the model shown in Fig. i. 

face in an elementary cell is 

F~ = 6A (L - A) 

for an elementary cell whose volume is 

V -- L S. 

According to [i] 

Then 

A = D I/-~/4, L = A/C. 

(20) 

The total fiber sur- 

(21) 

(22) 

(23) 

Fso 24C 2 (1 - -  C) 
FsP - V ' DV '~  (24) 

Substituting (24), (20), and (18) into (19) and making some algebraic transformations, we ob- 
ta in 

(25) 
;~*g = ~ ' g [  1 : 7 , ~) 6CZ(I--C)]-  1 . - m ~ / - - - -  ~ 

Using (8) we transform Eq. (25) to the form 

* =%g(l  + b K n )  -l, ~g 

where 

b = 6C (1 -- C)/m ] / ~ ,  

(26) 

(27) 

and 0 ~ b ! ~ (the value b = ~ is obtained by evaluating the indeterminate form 0/0). 

Figure 3 shows the dependence of the molecular thermal conductivity of a gas inside a 
dispersed fibrous material on the porosity calculated by Eq. (25) for various values of the 
fiber diameter at atmospheric air pressure and an average temperature of 300~ 

Analysis of Eqs. (17) and (25) shows that as a fibrous dispersed material is compacted 
~* is decreased proportionally, the number of collisions of gas molecules with fibers in- 
creases, and the number of intermolecular interactions decreases. This leads to an improve- 
ment in heat transfer in the boundary layer and a decrease in the molecular thermal conductiv- 
ity of the gas I *. For a porosity corresponding to the maxlmum value of ~ the number of 
molecules N in t~e volume of the dispersed material is sharply decreased, heat transfer be- 
tween gas and fiber is worsened, and at m = 0, a = 0. For an increase in fiber diameter (all 
other conditions remaining the same) the average distance between fibers and the number of 
intermolecular interactions increase. As a result %g* increases and ~ decreases. 

Figure 4 compares experimental values of the effective thermal conductivity for various 
fibrous materials with corresponding values calculated by the relation [i] 

[ -1 ^ , .  ~eff=~! C2..t_v(1__C)2. ~ 2vC(1 C) 
v C +  (1 - -C)  (28) 
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and by (5). It is clear from Fig. 4 that the values calculated by (5), which takes account 
of heat transfer at the gas--fiber boundary, are in better agreement with experiment than 
values calculated by (28). 

NOTATION 

%_*, %g, molecular thermal conductivity of gas inside a dispersed material and in a free 
volume~ Kn, Knudsen number; ~, [*, mean free path of gas molecules in a free volume and in- 
side a dispersed material; ~,, thermal conductivity of fiber; %r, radiative heat-transfer 
coefficient; a, heat-transfer coefficient of gas-fiber boundary in a layer of thickness l*; 
%eff, effective thermal conductivity of dispersed material; D, fiber diameter; A, L,_element- 
ary cell parameters; Cp, pg, specific heat and density of gas filler, respectively; v, aver- 
age veloclty of thermal motion of gas molecules; M, molecular weight of gas; Fsp , specific 
surface of solid phase per unit volume of dispersed material; m, porosity; k, Boltzmann con- 
stant, 1.38.10 -~5 J/deg; no, Loschmidt number, 2.69.1025 m-S; Ti, temperature of gas at a 
distance ~* from fiber surface; Ts, temperature of fiber surface; a, accommodation coeffi- 
cient; y, ratio of specific heat of gas at constant pressure to specific heat at constant 
volume. 

i. 

o 

3. 
4. 
5. 
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USE OF A DIAMETRAL BLOWER IN A FLOW-THROUGH LASER WITH A 

CLOSED GAS-CIRCULATION SYSTEM 

R. I. Soloukhln, Yu. A. Yakobi, 
E. I. Vyazovlch, and S. P. Vagln 

UDC 621.378 

The choice of a dimetral blower in a closed laser gasdynamic loop is justified 
and its operation is investigated. 

It is known [i] that the specific energy applied to the active medium of electric-dis- 
charge gas lasers is limited by two factors -- heating and instability of the gaseous plasma. 
The main method for overcoming them in application to continuously operating lasers is the 
rapid pumping of gas through the discharge in a time less than the relaxation time of the 
internal degrees of freedom and the time of development of instabilities [2]. The stability 
of the discharge essentially depends on the uniformity of the stream. In [3], e.g., upon a 
decrease in the velocity scatter from i0 to 3% the maximum energy applied in the stable mode 
grew more than twofold. The reason for this phenomenon is that nonuniformity of the stream 
leads to superheating of those of its parts which move with a lower velocity. This leads to 
transverse stratification of the discharge [4]. The zones with increased current density 
arising in this case are most dangerous from the point of view of contraction of the dis- 
charge [5] and considerably reduce the attainable threshold for the total energy input. Local 
superheats also lead to optical nonuniformity of the medium associated with density gradients. 
Optical nonuniformlties cause radiation losses to scattering in the active medium, as well 
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